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Abstract: The noise characteristics of GPS time series data appear represented ade-
quately by a combination of flicker noise and white noise. For the 21 components
from 7 baselines examined, the results shown in Figure 1 indicate that the ampli-
tude of flicker noise is highly correlated with white noise which suggests that the
noise detected is due to the combination GPS hardware/software rather than monu-
ment noise. If the temporal correlation was monument noise, then | don’'t believe
that the white and colored noise amplitudes would be correlated. At this time, |
can not detect confidently any random walk noise due to the monument wobble.
Even though random walk noise is not detected in the data, however, the resultsin
Figure 2 show that its presence can still affect the standard errors in rates for inter-
vals greater than 2 months or less assuming that the random walk exceeds
0. Smm/4jyr.

The data analyzed here are position changes from 7 sites provided to me by
Meghan Miller. The data span between from 2 years at REDM to 7.4 years at ALBH and
DRAO. The 7 sites can be grouped into 3 categories. Three sites, CABL, PABH, and
REDM, were installed by the PANGA group. These use geodetic quality Trimble
receivers and choke ring antennas. At two sites, CABL and PABH, deeply braced monu-
ments were used in marine sediments at these sites along the Pacific Coast. The other site,
REDM, is an invar rod grouted into bedrock. All three of these sites should have stable
monuments and high quality GPS phase data. However, the record for these sites tend to
be short, from 2 to 3 yearsin length.

The ALBH and DRAO sites are IGS(?) sites using Rogue receivers and choke ring
antennas. The monuments consist of 1.5 to 3 meter high cement piers anchored to
bedrock. Both sites have data records over 7 yearslong. ALBH islocated on the coast.

The last 2 sites were installed for the Coast Guard. They use high quality Ashtech
receivers but non-choke ring antennas (known as a "whopper" antennas). The antennas
also are covered by a "snow" dome. Both of these conspire to decrease the quality of the
phase data. The site logs do not mention anything about the monuments, but | will
assume that these monuments are not as good as the other 5 sites. The record length for
these baselines are between 3.5 and 4.5 years.

| evaluated the noise spectra from these sites several ways. First, | used the Maxi-
mum Likelihood Estimation (MLE) to find the best fitting data covariance for each time-
series. | evaluated 5 different types of noise models and used the MLE technique to adjust
the size of the noise components to match the data. (Technique is described by Langbein
and Johnson, 1997 JGR). The 5 noise models examined are, Random walk, Flicker,
Power-law, Random walk plus Band-pass filtered, and Flicker plus Band-pass filtered. All
five aso include white noise. Random walk and Flicker noise are special cases of Power-
law noise with the index set to 2 and 1 respectively. That is, power law noise has a power
spectra density of:
Po
P(f) = o
where nisthe index, f isfrequency, and P, is a constant

The other noise component examined is band-pass filter noise. Here, | attempted to
model the more complex signal that appears to be seasonal with roughly a 365-day
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period. In all cases, | fit and removed a seasonal signal along with the rate when | esti-
mated the noise character of the data. However, the single sine wave doesn’'t necessarily
capture al of the frequencies that might be present in data contaminated with an annual
cycle. To capture this complexity, | added an additional covariance term to mimic white
noise that had been band-pass filtered with the center frequency of the pass-band at
1-cycle per year. Although | can specify the width of the pass band and the stegpness of
the curve that defines the pass band, | chose to evaluate only one type of model; a pass
band between 0.5 and 1.5 cycles per year with 1-pole.

The results of the improvement of fit for 4 of the noise models relative to the flicker
plus white noise models are shown in Table 1. The vaues shown indicate the
improvement of the fit of the noise model to the data. A positive number indicates that
model fits better than the flicker plus white noise model. (All noise models have a white
noise component; | may forget to state it explicitly). A negative number indicates a worse
fit of that model relative to the flicker model. The more positive the MLE value, the ’ bet-
ter’ the noise model fits the data. In all cases, the flicker model is better than the random
walk model. In some cases, the more general power-law model is significantly better than
the flicker model. Also, the flicker plus band-pass filtered (BP1) usually provides a better
fit than just flicker. When band-pass filtered noise is added to random walk, it usualy
improves the fit relative to the random-walk only model and, for many sites, it is not
much worse than the flicker only model. | would judge a change of MLE lessthan 2 or 3
not to be significant. (In principle, one can compute confidence intervals of the
improvement, but that takes many simulations of noisy data.)

Another test whether any or all of these noise models are consistent with the datais
to evaluate the spectrum of wander (Agnew, 1992 GRL) for each time-series and test that
spectrum against the ranges of wander derived from a series of simulated data having the
same noise model as the real data. Wander, w(z) is defined as function of period 7 as:

wA(z) = % j (r(t+ 7) — r(t))%dt

and where T is the length of the time series and where r(t) is the time-series data residual
after the average value, rate, and annua periodicity have been removed from the
observed. For each combination of time-series and model, | evaluated this function
numerically. Figure 3 shows a case for the east component of DRAO. In addition to esti-
mating wander for the data residual, confidence limits for rejecting a candidate model can
be determined by ssimulation. For instance, for a random walk model, 100 sets of simu-
lated data are made using the amplitude of random walk (and white) noise estimated from
the real data. For each set, a wander spectrais computed. Then, at each period, the values
of wander from the 100 simulations are sorted from largest to smallest. From these lists
of sorted numbers, the 68% and 95% confidence values are identified. In addition, a mean
and standard deviation is derived. At each period, the value of wander for the real datais
subtracted from the average from the simulated data and normalized by the standard devi-
ation of the simulated data. For all periods, this statistic is squared and summed to form a
22 statistic. The value of 42 is evaluated in terms of a rejection confidence. These rejec-
tion confidences are shown in Table 2. In aimost all the cases, the random-walk model is
rejected.

Because the y? statistic maybe too severe rejecting models, | also performed a
visual inspection of the wander spectra from each site and model. | found in many cases
where 2 indicates that all of the noise models should be rejected, the actual inspection of
spectra indicate that some models do mimic much of the real data. Thisis illustrated in
Figure 4 for the east component of CAB1. In fact, the wander spectra have large
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fluctuations at periods less than 1-month that are not accounted for by any of the noise
models. However, the long-period spectra seems well represented by all of the noise mod-
els. Part of the explanation for these short period variations is, according to Ken Hurst,
due to improper modeling of the ocean loading tide for coastal sites. One of the beat fre-
guencies for the Earth-tide has a period of 13.65 days. When a new set of noise models
are estimated for CABL with an additiona periodicity of 13.65 days, these models fit the
observations better than the models without the 13.65 day period. (The amplitude of the
13.65 day period is 0.6 mm). This improvement is shown in Figure 5 where it is noted
that the short period fluctuations of wander have decreased. It is likely that the ocean
loading tide till contaminates the real data. In processing the phase data into a single
position for each day, it is likely that the un-modeled tidal-components become aliased.

Although general power-law noise is an attractive model since is seems to model
the noise character best, | prefer either the flicker noise or random-walk plus band-pass
filtered noise models. From the visual inspections, both of these models appear attractive.
The flicker noise aternative to power-law noise is attractive because it is simpler (index
equals 1) and, if one averages the indices found for the power-law model, that average is
only dlightly less than 1. The equivalent functions of the power density for the power-law
model is shown in Figure 6. Clearly, none of the sites are random-walk. Most of the
slopes of the low frequency components are less than 1 with several close to 0.5 when
these components are not too different that purely white noise (slope of 0). In fact, with
the short time spans of many of the data, it is difficult to unambiguously resolve the tem-
poraly correlated part of the noise spectra. Thisis especially problematic since for many
of the spectra, the annual term dominates the noise and this could leak into nearby fre-
guencies. Hence, for simplicity, this suggests that flicker noise provides an adequate noise
model.

An attractive alternative (at least to me) is a combination of random-wak plus
band-pass filtered noise. These spectra are illustrated in Figure 7. At the longest periods,
the spectra are forced to be random walk which, | believe, is due to random monument
motions. At periods around 1 year, the spectra is peaked but smeared over severa fre-
guency bands. If one were to fit a linear trend over the periods representing band-pass of
the filter, a flicker noise character might be indicated. This relation most apparent for the
two IGS stations which are the longest time-series analyzed here. The explanation of the
broad-band, seasonal noise is probably a combination of a season wobble of the monu-
ment and biases or systematic errors in the GPS processing.

Since the MLE method is computationally intense, (for the IGS sites with 7 years
of data, it takes about 8-10 minutes to invert the covariance matrix; given the MLE rou-
tine tries nearly 200 different combination of parameters, it takes about 1-day to compute
the noise parameters for one noise model for one time-series!) | explored a simpler
method to estimate the noise components. Assuming that the time-series does not have
significant gaps or offsets, standard power spectral techniques can be used to estimate the
size of the flicker (or random walk) and white noise components. GPS data often satisfy
these criteria of short, infrequent data gaps, and offsets that are easily removed. To deal
with the data gaps that exist, these can be filled with interpolated values. | use linear inter-
polation but, to these interpolates, | add white noise. | determine the white noise from the
data by removing a running mean consisting of 2 to 3 days length. The white noise is
determined from the residuals of that running mean. From the data set with its gaps filled,
a power spectra is computed using standard FFTs. For the results shown in Figure 8, |
have not done any smoothing; rather, the spectra can be considered a periodogram. | fit to
the raw spectral values a curve representing a combination of flicker and white noise.
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Because the longest periods of the spectrum are poorly determined (They depend upon
proper removal of a linear trend --- this trend is different depending upon whether the
data are random-walk or white noise), I down-weight the long period components for
curve fitting. Comparison of the amplitudes flicker and white noise that | get from spec-
tral analysis indicate that the spectrally derived estimates for the flicker noise are within a
factor of 2 of the MLE determined amplitudes. (The white noise is within 10%.) This
method is probably the best way for most investigators to compute noise levels of their
data.

Once the parameters for the data covariance are specified, the rates, offsets, and
other parameters needed to model the deformation as a function of time can be estimated.
Importantly, these parameters and their standard error are determined. Using the flicker
and white noise models from the better GPS sites, the standard error in rate as a function
of the length of the time-seriesisillustrated in Figure 2 and Table 4. Although | could not
resolve any additional contribution due to random-walk noise, if present at the
0. 5mm/+Jyr level, it does increase the uncertainty of the rate estimates. In addition, if sea-
sonal variations are modeled as a single sine wave, that additional unknown affects the
rate uncertainty for time-spans of less than one year. Thisisillustrated in Figure 9.

One of the goals of this paper was to try to detect whether monument noise might
be present in some of the GPS time-series, especially from the data with the longest time
gpan (the IGS sites) or from the Coast Guard sites with antennas mounted on potentially
wobbly towers. However, rather than finding any random-walk (or high index power-law)
models for these data, | see that the flicker amplitudes are correlated with the white noise
amplitudes (Figure 1). If monument noise was present and causing the 1/f relation of
flicker noise, 1 would not have expected a strong correlation between flicker amplitude
and white noise. The results shown in Figure 1 indicate that the flicker amplitude is about
40% of the white noise amplitude. With more GPS data available, this correlation should
be testable.

The other possible measure of monument noise is the seasonal amplitude. From the
experience of Langbein and Johnson [1997], a large seasona amplitude is indicative of a
poor monument, but a low seasonal amplitude does not indicate that the monument is
good. The estimates of seasonal noise is provided in Table 4. Unfortunately, GPS pro-
cessing may introduce systematic biases that could manifest itself as seasona noise.
Since the two Coast Guard sites don’t have significantly greater amounts of seasonal vari-
ation than the other sites, it is not possible to state that monument noise is the sole cause
to seasonal variation.

Conclusions:

1 Flicker plus white noise provides an adequate characterization of noise in GPS
data. We can reject the purely random walk model. Random-walk plus band-pass
filtered noise might be a suitable model but we'll need longer time-series to be able
to favor either the flicker (or power law) or the random-walk plus band-pass filtered
model.

2 From this set of GPS data, it appears that the flicker component is about 40% of the
white noise component. This suggests that the correlated part of the noise is due to
instrumentation issues related to the hardware, ie. the antenna, or to the software
(inadequate models in the GPS software).

3 Even though random-walk noise is not detectable in these time-series, a low-level
amounts of this noise can make a significant contribution to the standard error in
rate for periodsin excess of afew months.
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Given the large amount of GPS data that will be available soon, the MLE technique
is too time consuming to provide noise estimates routinely. Rather, if the GPS data
do not have too many gaps and none of the gaps are too long, standard power spec-
tra estimation can provide reasonable estimates of noise. MLE technique should be
used with data with significant gaps or to define generic noise models needed to
characterize the error spectra of GPS.



Tablel

Changein MLE relative to FL model East
PL BP1_FL RW BP1_RW

cabl 4.59 -0.00 -10.29 -7.06

cmel  0.53 4.58 -5.34 4.58
ftsl 0.47 0.01 -11.00 -5.12
pabh 0.38 2.74 -5.57 2.74
redm 0.43 0.00 -1.20 -0.97
abh 0.64 1.62 -12.27 -1.18
drao 0.16 0.29 -9.61 -2.24

Changein MLE relative to FL model North
PL BP1 FL RW BP1_RW

cabl 0.14 0.00 -12.76 -3.21

cmel 124 0.00 -14.50 -3.17
ftsl 0.28 0.42 -9.75 -3.62
pabh 0.04 1.62 -2.77 1.60
redm 0.20 4.05 -3.18 4.05

abh 0.91 0.00 -14.02 -4.43
drao 0.01 0.00 -11.81 -6.38

Changein MLE relative to FL model Up
PL BP1_FL RW BP1_RW

cabl 0.05 -0.00 -4.37 -3.69
cmel  0.03 0.03 -8.45 -3.56
ftsl 0.49 0.00 -3.64 -2.61
pabh 6.50 -0.43 -6.71 -0.44
redm 4.06 1.44 0.00 144

abh 0.15 0.01 -23.22 -12.83
drao 1.56 -0.00 -29.78 -18.51



Table2
Rejection confidence: East
Noise Model type
RW FL RwW+BP1 FL+BP1 PL
abh 100 74 98 88 74
drao 100 1 91 1 0
cabl 100 100 100 100 100
cabl-13.65 100 100 100 96 85
pabh 100 100 100 100 100
redm 1 25 11 17 14
cmel 100 98 100 98 80
ftsl 100 87 95 100 1
Rejection confidence: North
Noise Model type
RW FL RwW+BP1 FL+BP1 PL
abh 100 16 86 49 4
drao 99 7 17 4 1
cabl 100 0 16 0 0
cabl-13.65 100 0 6 0 0
pabh 58 74 85 69 66
redm 94 100 100 100 91
cmel 100 62 100 92 99
ftsl 100 100 100 100 100
Rejection confidence: UP
Noise Model type
RW FL RwW+BP1 FL+BP1 PL
abh 100 100 100 97 100
drao 100 79 100 91 69
cabl 100 91 100 99 92
cabl-13.65 80 100 97 97 19
pabh 100 96 99 99 82
redm 25 16 20 7 0
cmel 100 3 48 5 4
ftsl 100 99 100 100 100

Total number rejected P > 90
Noise Modd type
RW FL RW+BP1 FL+BP1 PL

East 6 3 6 4 1
North 6 2 3 3 3
Up 5 4 5 5 2
All 17 9 14 12 6



Table3
Rejection confidence visual: EAST
Noise Modédl type
RW FL RW+BP1 FL+BP1 PL
albh y n n n n
drao y n n n n
cabl
cabl-13.65 y n y n n
pabh n n n n n
redm n n n n n
cmel y n n n n
ftsl y n n n n
Rejection confidence visual: North
Noise Model type
RW FL RW+BP1 FL+BP1 PL
albh y n n n n
drao y n n n n
cabl y n n n n
cabl-13.65 y n n n n
pabh n n n n n
redm n n n n n
cmel n n n n n
ftsl y n n n n
Rejection confidence visual: UP
Noise Model type
RW FL RW+BP1 FL+BP1 PL
albh y n n n n
drao y n n n n
cabl n n n n n
cabl-13.65 n n n n n
pabh n n n n n
redm n n n n n
cmel y n n n n
ftsl n n n n n

Total number rejected visually
Noise Modd type
RW FL Rw+BP1 FL+BP1 PL

East 5 0 1 0 0
North 4 0 0 0 0
Up 3 0 0 0 0
All 12 0 1 0 0



Table4

Flicker plus white noise amplitudes: EAST

Flicker  White Seasona  13.65-day
albh 0.884 1.983 0.422
drao 0654 2115 0.608
cabl 0894  2.014 1.127
cabl-13.65  0.763 2.037 1.118 0.6
pabh 0.542 1.824 0.676
redm 0.675 2.461 0.875
cmel 1167  4.326 0.732
ftsl 1.530 2.596 0.879
Flicker plus white noise amplitudes: NORTH
Flicker  White Seasona  13.65-day
albh 0.476 1.040 0.174
drao 0.484 1.200 0.368
cabl 0.545 1.063 0.552
cabl-13.65  0.530 1.062 0.552 0.2
pabh 0.309 1.005 0.344
redm 0.594 1.242 1.034
cmel 1.088 2.221 2.067
ftsl 0.825 1.503 0.971
Flicker plus white noise amplitudes: UP
Flicker  White Seasonal 13.65-day
albh 1919  3.368 1.504
drao 1781  3.649 2.130
cabl 1.608  3.363 1431
cabl-13.65  1.520 3.361 1421 0.9
pabh 1.085  3.282 1.201
redm 0.006  4.667 0.842
cmel 3144  6.343 3.053
ftsl 1900 4497 2.283
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Figure 1: Scatter plot of estimated values of white noise versus that for flicker noise
using 7 sites described in the paper. Linear trend shows the high correlation between
white and flicker noise; the flicker noise component is about 40% of the white noise.
Only one point deviates grossly from this relation. That point is for the vertical compo-
nent of REDM where high white noise precludes the detection of temporally correlated
noise dueto its short (2 year) time span.

Figure 2: Estimates of standard errors in secular rate for avariety of time-spans and noise
models. The 3, dark lines are error estimates with different combination of white and
flicker noise; the bottom trace is 1.0 mm white and 0.4 mm flicker, the middle traceis 2.0
mm white and 0.8 mm flicker, and the top trace is 3.5 mm white and 1.4 mm flicker.
These three models are generally noise amplitudes for the best sites for north, east, and
up respectively. The colored curves shows the influence of random-walk has upon the
above model. The red curve is an additional 0. 5mm/+jyr random-walk noise, the blue is
1. Omm/4yr, and green is 2. Omm//yr.

Figure 3: Plot of wander spectra for the east component of DRAO against wander esti-
mated from simulated data having similar noise as estimate from the real data. The heavy
line is wander from the real data and the lighter lines represent confidence bounds based
upon 100 simulation of the data. The dashed lines are the 68% confidence limits, the
outer light, solid lines are the 95% confidence limits, and the middle, light line is the
average wander from the simulated data. Also shown are the noise components used to
simulate the data. Confidence levels for rejecting the candidate model are aso shown; one
for the entire wander spectra, and a second value for the wander spectra at the longer
periods, 7 > 30 — days.

Figure 4: Asas Figure 3 but for the east component of CABL

Figure 5: As as Figure 4 for the east component of CABL but with 0.6 mm of 13.65
period sinusoid removed from the data. This period is probably due to improper removal
of the ocean load component of the Earth Tide. It seems to affect east and up more than
the north component.

Figure 6: Equivalent power spectra density derived from a power-law plus white noise
model estimated using MLE. Each figure shows one component, east, north, and up. Ref-
erence power densities for various amplitudes of random walk noise are shown.

Figure 7. Equivalent power spectra density derived from a random-walk and band-pass
filtered noise plus white noise model estimated using MLE. Each figure shows one com-
ponent, east, north, and up. Reference power densities for various amplitudes of random
walk noise are shown.

Figure 8: The periodogram of east component from ALBH is shown with a thin dark
line. Note the spike at 13.65 days. The blue curve is the equivalent PSD function using
the MLE technique. The solid, red line is the PSD function using the periodogram to esti-
mate the size of the flicker and white noise components. The dashed, red line is the PSD
function for flicker and white noise estimated from the periodogram but constraining the
value of white noise. This is described in the text; it is the RMS scatter of residuals after
removing a running mean from the data. For estimating the parameters of the red curves,
the components of longest periods in the periodogram have been down-weighted.

Figure 9: Same as Figure 2 but with the additional parameters of a 365 day sinusoid
added to the deformation model with time.
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Fliéker noise EstimatesI
PSD PSD. MLE
white 1.854 2.080 1.983
flicker 1.025 1.004 0.884
lc/yr 0.000 0.000 0.422 _
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